Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study.

نویسندگان

  • Kejie Zhao
  • Wei L Wang
  • John Gregoire
  • Matt Pharr
  • Zhigang Suo
  • Joost J Vlassak
  • Efthimios Kaxiras
چکیده

Silicon can host a large amount of lithium, making it a promising electrode for high-capacity lithium-ion batteries. Recent experiments indicate that silicon experiences large plastic deformation upon Li absorption, which can significantly decrease the stresses induced by lithiation and thus mitigate fracture failure of electrodes. These issues become especially relevant in nanostructured electrodes with confined geometries. On the basis of first-principles calculations, we present a study of the microscopic deformation mechanism of lithiated silicon at relatively low Li concentration, which captures the onset of plasticity induced by lithiation. We find that lithium insertion leads to breaking of Si-Si bonds and formation of weaker bonds between neighboring Si and Li atoms, which results in a decrease in Young's modulus, a reduction in strength, and a brittle-to-ductile transition with increasing Li concentration. The microscopic mechanism of large plastic deformation is attributed to continuous lithium-assisted breaking and re-forming of Si-Si bonds and the creation of nanopores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...

متن کامل

Deformation and fracture of silicon electrodes in lithium-ion batteries

We have performed a number of experiments to examine the mechanical behavior of amorphous silicon electrodes of lithium-ion batteries. In particular, we have measured the fracture energy of lithiated silicon thin-fi lm electrodes as a function of lithium concentration. The fracture energy is found to be similar to that of pure silicon and essentially independent of the concentration of lithium....

متن کامل

Reactive flow in silicon electrodes assisted by the insertion of lithium.

In the search for high-energy density materials for Li-ion batteries, silicon has emerged as a promising candidate for anodes due to its ability to absorb a large number of Li atoms. Lithiation of Si leads to large deformation and concurrent changes in its mechanical properties, from a brittle material in its pure form to a material that can sustain large inelastic deformation in the lithiated ...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 7  شماره 

صفحات  -

تاریخ انتشار 2011